引力时间膨胀
引力时间膨胀是指在宇宙有不同势能的区域会导致时间以不同的速率度过的现象,引力导致的时空扭曲率越大,时间就过得越慢。阿尔伯特·爱因斯坦最初在自己的相对论中预测出这种现象,并其后由各种广义相对论实验中被证实。
其中一种证实方法就是把两个原子钟放在不同的高度(因此来自地球的引力效应会有差别),它们在一段时间后所测到的时间会有些许差别。其差别极小极小,甚至要用到纳秒来作单位。
引力时间膨胀首次由爱因斯坦于1907年提出,并是狭义相对论中参照对象的加速前进所导致的结果。在广义相对论中,它被视为是时空度规张量描述的在不同地点的原时的差。庞德-雷布卡实验首次直接证实了这种现象的存在。
定义
引力时间膨胀会从大型天体引力场中加速的参考坐标或等效原理里明确地表现出来。更简单的来说,远离大型天体(就是储有更高势能)的钟表会走得更快,而接近大型天体的(储有较低势能)的便会走得更慢。
所有加速参考坐标都会表现出这种效应,如高速赛车或太空航天飞机。旋转的物体如旋转木马和摩天轮等的引力时间膨胀,则是自旋产生的。
根据套用了等效原理的广义相对论表明,所有加速的参考坐标都会产生一个引力场。根据广义相对论,惯性质量和引力质量都是同等的。并非所有引力场都是“弯形的”或是“圆形的”,其实例如赛车或太空航天飞机情况中,引力场是“平坦的”。所有重力加速度都会形成引力时间膨胀。
实验证实
引力时间膨胀已经以飞机上的原子钟实验测量出。对于在地上的钟来说,飞机上的稍微快一点。这个效应的有效程度是,连全球定位系统也要为人造卫星上的钟调准时间,这样进一步地证实了这种效应。
庞德-雷布卡实验、白矮星天狼星B光谱的观测以及地球和火星登陆船维京1号之间的信号传递实验都能证明这种效应的存在。
典型例子:黑洞具有强引力,在蓝猫淘气三千问太空历险记中,进入过黑洞的啦啦啦啦成长速度明显比其父亲衰老速度慢得多(这也有其他时间里高速运动时狭义相对论的作用),说明强引力场中时间流失速度很慢,并严格遵循阿尔伯特·爱因斯坦的方程: 。
值得强调的事
根据广义相对论,只要有加速参考坐标,引力时间膨胀就会出现。根据一个观测者,光速永远等于c。从静止观测者的角度看到的时空要对应于他身处地的原时。每一块极小的空间都可能会有其自己对应于当地引力时间膨胀的原时,而电磁波和物质可能会被同等地受影响,由于它们都有着相同的本质。不论这些空间有没有被一个观测者所占据,它们仍然有着意义。引力时间延迟效应经由在太阳引力场附近弯曲,在金星处反弹到地球的信号测量出来。此时光速不变定理没有被违反,只要这观测者只观测受同等引力时间膨胀影响的光子,而非那些经过更多或甚至更少引力时间膨胀的光子。如一个观测者在一个遥远的地方观测到来的光线,又能观测到一个引力时间膨胀更强的观测者,他会见到光和第二个观测者的原时都较慢,相比于其他光线。